Hitachi Ultrastar and Seagate Barracude LP 2TB drives

In my previous post I talked about Western Digital RE4-GP 2TB drive problems.

In this post I present my test results for 2TB drives from Seagate and Hitachi.
The test setup is the same as for the RE4-GP testing, except that I only tested 4 drives from each manufacturer.
Unlike the enterprise class WD RE4-GP and Hitachi Ultrastar A7K2000 drives, the Seagate Barracuda LP drive is a desktop drive.
The equivalent should have been a Seagate Constellation ES drive, but as far as I know the 2TB drives are not yet available.
To summarize:
The Hitachi A7K2000 drives performed without issue on all three controllers, the Seagate Barracuda LP drive failed to work with the Adaptec controller.
The Hitachi Ultrastar A7K2000 outperformed the Seagate Barracuda LP drive, but this was not really a surprise given the drive specs.
The Areca ARC1680 controller produced the best and most reliable results, the Adaptec was close, but given the overheating problem, it is not reliable unless additional cooling is added.
Test hardware:
Intel S5000PSL motherboard, dual Xeon E5450, 32GB RAM, firmware BIOS-98 BMC-65 FRUSDR-48
Adaptec 51245 RAID controller, firmware 17517, driver 5.2.0.17517
Areca ARC1680ix-12 RAID controller, firmware 1.47, driver 6.20.00.16_80819
LSI 8888ELP RAID controller, firmware 11.0.1-0017 (APP-1.40.62-0665), driver 4.16.0.64
Chenbro CK12803 28-port SAS expander, firmware AA11
Drive setup:
– Boot drive, 1 x 1TB WD Caviar Black WD1001FALS, firmware 05.00K05
Simple volume, connected to onboard Intel ICH10R controller running in RAID mode
– Data drives, 4 x 2TB Hitachi Ultrastar A7K2000 HUA722020ALA330 drives, firmware JKAOA20N
1 x hot spare, 3 x drive RAID5 4TB, configured as GPT partitions, dynamic disks, and simple volumes
– Data drives, 4 x 2TB Seagate Barracuda LP ST32000542AS drives, firmware CC32
1 x hot spare, 3 x drive RAID5 4TB, configured as GPT partitions, dynamic disks, and simple volumes

I tested the drives as shipped, with no jumpers, running at SATA-II / 3Gb/s speeds.
Adaptec 51245, SATA-II / 3Gb/s:
As in my previous test I had to use an extra fan to keep the Adaptec card from overheating.
The Hitachi drives had no problems.
The Hitachi drives completed initialization in 16 hours.
The Seagate drives would not show up on the system, I tried different ports, resets, cable swaps, no go.
Adaptec, RAID5, Hitachi:

Adaptec, RAID5, WD:

Areca ARC1680ix-12, SATA-II / 3Gb/s:
The Areca had not problems with the Hitachi or Seagate drives.
The Hitachi drives completed initialization in 40 hours.
The Seagate drives completed initialization in 49 hours.
The array initialization time of the Areca is significantly longer compared to Adaptec or LSI.
Areca, RAID5, Hitachi:

Areaca, RAID5, Seagate:

Areca, RAID5, WD:

LSI 8888ELP and Chenbro CK12803, SATA-II / 3Gb/s:
The Hitachi drives reported a few “Invalid field in CDB” errors with, but it did not appear to affect the operation of the array.
The Hitachi drives completed initialization in 4 hours.
The Seagate drives reported lots of “Invalid field in CDB” and “Power on, reset, or bus device reset occurred” errors, but it did not appear to affect the operation of the array.
The Seagate drives made clicking sounds when they powered on, and occasionally during normal operation.
The Seagate drives completed initialization in 4 hours.

LSI, RAID5, Hitachi:

LSI, RAID5, Seagate:

LSI, RAID5, WD:

The Hitachi A7K2000 drives performed without issue on all three controllers, the Seagate Barracuda LP drive failed to work with the Adaptec controller.
The Hitachi A7K2000 outperformed the Seagate Barracuda LP drive, but this was not really a surprise given the drive specs.
The Areca ARC1680 controller produced the best and most reliable results, the Adaptec was close, but given the overheating problem, it is not reliable unless additional cooling is added.

I will be scaling my test up from 4 to 12 Hitachi drives, using the Areca controller, and I will expand the Areca cache from 512MB to 2GB.

Power Saving SATA RAID Controller

I’ve been a longtime user of Adaptec SATA RAID cards (3805, 5805, 51245), but over the years I’ve become more energy saving conscious, and the Adaptec controllers did not support Windows power management.
My workstations are normally running in the “Balanced” power mode so that they will go to sleep after an hour, but sometimes I need to run computationally intensive tasks that leaves the machines running 24/7.
During these periods the disks don’t need to be on and I want the disks to spin down, like they would had they been directly connected and not in a RAID configuration.
I was building a new system with 4 drives in RAID10, and I decided to the try a 3Ware / AMCC SATA 9690SA-4I RAID controller. Their sales support confirmed that the card does support native Windows power management.
I also ordered a battery backup unit with the card, and my first impressions of installing the battery backup unit was less than impressive. The BBU comes with 4 plastic screws with pillars, but the 9690SA card only had one mounting hole. After inserting the BBU in the IDC header I had to pull it back out and adjust it so that it would align properly.
After running the card for a few hours I started getting battery overheating warnings. The BBU comes with an extension cable, and I had to use the extension cable and mount the battery away from the controller board. After making this adjustment the BBU seemed to operate at normal temperature.
Getting back to installation, the 3Ware BIOS utility is very rudimentary (compared to Adaptec), I later found out that the 3Ware Disk Manager 2 (3DM2) utility is not much better. The BIOS only allowed you to create one boot volume, and the rest of the disk space was automatically allocated. The BIOS also only supports INT13 booting from the boot volume.
I installed Vista Ultimate x64 on the boot volume, and used the other of the volume for data. I also installed the 3DM2 management utility, and the client tray alerting application. The client utility does not work on Vista because it requires elevation, and elevation s not allowed for auto start items. The 3DM2 utility is a web server and you connect using your web browser.
At first the lack of management functionality did not bother me, I did not need it, and the drives seemed to perform fine. After a month or so I noticed that I was getting more and more controller reset messages in the eventlog. I contacted 3Ware support, and they told me they see CRC errors and that the fanout cable was probably bad. I replaced the cable, but the problems persisted.
The CRC errors reminded me of problems I had with Seagate ES2 drives on other systems, and I updated the firmware in the 4 500 GB Seagate drives I was using. No change, same problem.
I needed more disk space anyway, so I decided to upgrade the 500GB Seagate drives to 1TB WD Caviar Black drives. The normal procedure would be to remove the drives one by one, insert the new drive, wait for the array to rebuild, and when all drives have been replaced, to expand the volume.
A 3Ware KB article confirmed this operation, but, there was no support for volume expansion, what?
In order to expand the volume I would need to boot from DOS, Windows is not supported, run a utility to collect data, send the data to 3Ware, and they would create a custom expansion script for me that I then need to run against the volume to rewrite the META data. They highly recommend that I backup the data before proceeding.
I know the Adaptec Storage Manager (ASM) utility does support volume expansion, I’ve used it, it’s easy, it’s a right click in the GUI.
I never got to the point of actually trying the expansion procedure. After swapping the last drive I ran a verify, and one of the mirror units would not go past 22%. Support told me to try various things, disable scheduling, enable scheduling, stop the verify, restart the verify. When they eventually told me it seems there are some timeouts, and that the cause was Native Command Queuing (NCQ) and a bad BBU, I decided I had enough.
The new Adaptec 5-series cards do support power management, but unlike the 9690SA card they do not support native Windows power management, and requires power savings to be enabled through the ASM utility.
I ordered an Adaptec 5445 card, booted my system with the 9690SA still in place from WinPE, made an image backups using Symantec Ghost Solution Suite (SGSS), installed the 5445 card, created new RAID10 volumes, booted from WinPE, restored the images using Ghost, and Vista booted just fine.
From past experience I knew that when changing RAID controllers I had to make sure that the Adaptec driver would be ready after swapping the hardware, else the boot will fail. So before I swapped the cards and made the Ghost backup, I used regedit and changed the start type of the “arcsas” driver from disabled to boot. I know that SGSS does have support for driver injection used for bare metal restore, but since the Adaptec driver comes standard with Vista, I just had to enable it.
It has only been a few days, but the system is running stable with no errors. Based purely on boot times, I do think the WD WD1001FALS Caviar Black drives are faster than the Seagate ST3500320AS Barracuda drives I used before.
Let’s hope things stay this way.
[Updated: 17 July 2009]
The Adaptec was not that power friendly after all.
Read the continued post.